Abstract
We use molecular dynamics simulations to study the driven phases of particles such as vortices or colloids moving over a decagonal quasiperiodic substrate. In the regime where the pinned states have quasicrystalline ordering, the driven phases can order into moving square or smectic states, or into states with aligned rows of both square and triangular tiling which we term dynamically induced Archimedean-like tiling. We show that when the angle of the drive is varied with respect to the substrate, directional locking effects occur where the particle motion locks to certain angles. It is at these locking angles that the dynamically induced Archimedean tiling appears. We also demonstrate that the different dynamical orderings and locking phases show pronounced changes as a function of filling fraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.