Abstract

Table-top high-power terahertz (THz) pulse sources based on the femtosecond lasers are able to reveal fascinating nonlinear transport phenomena in materials and coherently drive low-energy transitions into the nonperturbative nonlinear regime. This article summarizes recent studies on THz nonlinear interactions with solid materials as follows. The tilted-pump-intensity-front scheme uses a LiNbO3 crystal to generate high-field single-cycle THz pulses with a 1 MV/cm amplitude. Such a high amplitude pulse can cause impact ionization in GaAs that excites electrons from the valence band to the conduction band, leading to exciton luminescence. A narrow-bandwidth THz pulse can be generated by using a chirped-pulse-beating method; this scheme has been used to show that resonant intraexcitonic excitation in GaAs induces a large Autler–Townes splitting. Moreover, nonlinear dynamics of magnetism can be studied by using a metallic split ring resonator to enhance the THz magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call