Abstract

Utilizing recent DIS measurements (\sigma_r, F_{2,3,L}) and data on hadronic dilepton production we determine at NNLO (3-loop) of QCD the dynamical parton distributions of the nucleon generated radiatively from valencelike positive input distributions at an optimally chosen low resolution scale (Q_0^2 < 1 GeV^2). These are compared with `standard' NNLO distributions generated from positive input distributions at some fixed and higher resolution scale (Q_0^2 > 1 GeV^2). Although the NNLO corrections imply in both approaches an improved value of \chi^2, typically \chi^2_{NNLO} \simeq 0.9 \chi^2_{NLO}, present DIS data are still not sufficiently accurate to distinguish between NLO results and the minute NNLO effects of a few percent, despite of the fact that the dynamical NNLO uncertainties are somewhat smaller than the NLO ones and both are, as expected, smaller than those of their `standard' counterparts. The dynamical predictions for F_L(x,Q^2) become perturbatively stable already at Q^2 = 2-3 GeV^2 where precision measurements could even delineate NNLO effects in the very small-x region. This is in contrast to the common `standard' approach but NNLO/NLO differences are here less distinguishable due to the much larger 1\sigma uncertainty bands. Within the dynamical approach we obtain \alpha_s(M_Z^2)=0.1124 \pm 0.0020, whereas the somewhat less constrained `standard' fit gives \alpha_s(M_Z^2)=0.1158 \pm 0.0035.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.