Abstract
A linear multiple regression model in function spaces is formulated, under temporal correlated errors. This formulation involves kernel regressors. A generalized least-squared regression parameter estimator is derived. Its asymptotic normality and strong consistency is obtained, under suitable conditions. The correlation analysis is based on a componentwise estimator of the residual autocorrelation operator. When the dependence structure of the functional error term is unknown, a plug-in generalized least-squared regression parameter estimator is formulated. Its strong-consistency is proved as well. A simulation study is undertaken to illustrate the performance of the presented approach, under different regularity conditions. An application to financial panel data is also considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.