Abstract

Dynamical models for 17 early-type galaxies in the Coma cluster are presented. The galaxy sample consists of flattened, rotating as well as non-rotating early-types including cD and S0 galaxies with luminosities between MB = 18.79 and MB = 22.56. Kinematical long-slit observations cover at least the major and minor axis and extend to 1 4 reff. Axisymmetric Schwarzschild models are used to derive stellar mass-tolight ratios and dark halo parameters. In every galaxy the best fit with dark matter matches the data better than the best fit without. The statistical significance is over 95 percent for 8 galaxies, around 90 percent for 5 galaxies and for four galaxies it is not significant. For the highly significant cases systematic deviations between observed and modelled kinematics are clearly seen; for the remaining galaxies differences are more statistical in nature. Best-fit models contain 10-50 percent dark matter inside the half-light radius. The central dark matter density is at least one order of magnitude lower than the luminous mass density, independent of the assumed dark matter density profile. The central phase-space density of dark matter is often orders of magnitude lower than in the luminous component, especially when the halo core radius is large. The orbital system of the stars along the major-axis is slightly dominated by radial motions. Some galaxies show tangential anisotropy along the minor-axis, which is correlated with the minor-axis Gauss-Hermite coefficientH4. Changing the balance between data-fit and regularisation constraints does not change the reconstructed mass structure significantly: model anisotropies tend to strengthen if the weight on regularisation is reduced, but the general property of a galaxy to be radially or tangentially anisotropic, respectively, does not change. This paper is aimed to set the basis for a subsequent detailed analysis of luminous and dark matter scaling relations, orbital dynamics and stellar populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call