Abstract
A new dynamical model is developed to describe the whole process of surrogate reactions; transfer of several nucleons at an initial stage, thermal equilibration of residues leading to washing out of shell effects and decay of populated compound nuclei are treated in a unified framework. Multi-dimensional Langevin equations are employed to describe time-evolution of collective coordinates with a time-dependent potential energy surface corresponding to different stages of surrogate reactions. The new model is capable of calculating spin distributions of the compound nuclei, one of the most important quantity in the surrogate technique. Furthermore, various observables of surrogate reactions can be calculated, e.g., energy and angular distribution of ejectile, and mass distributions of fission fragments. These features are important to assess validity of the proposed model itself, to understand mechanisms of the surrogate reactions and to determine unknown parameters of the model. It is found that spin distributions of compound nuclei produced in $^{18}$O+$^{238}$U $\rightarrow ^{16}$O+$^{240*}$U and $^{18}$O+$^{236}$U $\rightarrow ^{16}$O+$^{238*}$U reactions are equivalent and much less than 10$\hbar$, therefore satisfy conditions proposed by Chiba and Iwamoto (PRC 81, 044604(2010)) if they are used as a pair in the surrogate ratio method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.