Abstract

We tackle the dynamical description of the quantum measurement process, by explicitly addressing the interaction between the system under investigation with the measurement apparatus, the latter ultimately considered as macroscopic quantum object. We consider arbitrary Positive Operator Valued Measures (POVMs), such that the orthogonality constraint on the measurement operators is relaxed. We show that, likewise the well-known von-Neumann scheme for projective measurements, it is possible to build up a dynamical model holding a unitary propagator characterized by a single time-independent Hamiltonian. This is achieved by modifying the standard model so as to compensate for the possible lack of orthogonality among the measurement operators of arbitrary POVMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.