Abstract

We have employed one of the well-known many-body techniques, density functional theory plus dynamical mean-field theory (DFT + DMFT), to investigate the electronic structure of ferromagnetic monolayer CrI3 as a function of temperature and hole-doping concentration. The computed magnetic susceptibility follows the Curie's law, indicating that the ferromagnetism of monolayer CrI3 originates from localized magnetic moments of Cr atoms rather than Stoner-type itinerant ones. The DFT + DMFT calculations show a different coherent temperature for each spin component, demonstrating apparent strong spin-dependent electronic correlation effects in monolayer CrI3. Furthermore, we have explored the doping-dependent electronic structure of monolayer CrI3 and found that its electronic and magnetic properties are easily tunable by the hole-doping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.