Abstract

AbstractElectronic correlations strongly influence the properties of matter. For example, they can induce a discontinuous transition from conducting to insulating behavior. In this paper basic terms of the physics of correlated electrons are explained. In particular, I describe some of the steps that led to the formulation of a comprehensive, non‐perturbative many‐body approach to correlated quantum many‐body systems, the dynamical mean‐field theory (DMFT). The DMFT becomes exact in the limit of high lattice dimensions (d → ∞) and allows one to go beyond the investigation of simple correlation models and thereby better understand, and even predict, the properties of electronically correlated materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.