Abstract

The magnetic fields in heavy-ion collisions are important ingredients for many interesting phenomena, such as the Chiral Magnetic Effect, Chiral Magnetic Wave, the directed flow $v_1$ of $D^0$ mesons and the splitting of the spin polarization of the $\Lambda$/$\bar{\Lambda}$. Quantitative studies of these phenomena however suffer from limited understanding on the dynamical evolution of these fields in the medium created by the collisions, which remains a critical and challenging problem. The initial magnetic fields from the colliding nuclei decay very fast in the vacuum but their lifetime could be extended through medium response due to electrically conducting quarks and antiquarks. Here we perform a detailed analysis of such medium effect on the dynamical magnetic fields by numerically solving the Maxwell's equations concurrently with the expanding medium described by viscous hydrodynamics, under the assumption of negligible back reaction of the fields on the fluid evolution. Our results suggest a considerable enhancement of late time magnetic fields, the magnitude of which depends sensitively on the fireball expansion as well as the medium electric conductivity both before and during hydrodynamic stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.