Abstract

Dynamical low-rank approximation is a differential-equation-based approach to efficiently compute low-rank approximations to time-dependent large data matrices or to solutions of large matrix differential equations. We illustrate its use in the following application areas: as an updating procedure in latent semantic indexing for information retrieval, in the compression of series of images, and in the solution of time-dependent partial differential equations, specifically on a blow-up problem of a reaction-diffusion equation in two and three spatial dimensions. In 3D and higher dimensions, space discretization yields a tensor differential equation whose solution is approximated by low-rank tensors, effectively solving a system of discretized partial differential equations in one spatial dimension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.