Abstract

We study if the interplay between dynamical localization and interactions in periodically driven quantum systems can give rise to anomalous thermalization behavior. Specifically, we consider one-dimensional models with interacting spinless fermions with nearest-neighbor hopping and density-density interactions, and a periodically driven on-site potential with spatial periodicity m=2 and m=4. At a dynamical localization point, these models evade thermalization either due to the presence of an extensive number of conserved quantities (for weak interactions) or due to the kinetic constraints caused by drive-induced resonances (for strong interactions). Our models therefore illustrate interesting mechanisms for generating constrained dynamics in Floquet systems which are difficult to realize in an undriven system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.