Abstract

This paper describes a dynamical Lie algebraic method that we have developed in the application of the theory of Alhassid and Levine [Phys. Rev. A 18 (1978) 89] to rotationally inelastic molecule–surface scattering. Transition probabilities and their dependence on main dynamics variables of the collision system can be given analytically. An application of the method to direct rotationally inelastic scattering of NO molecules from a static, flat Ag(111) surface is made. Calculations performed for this model system yield snapshots of the probability current density and those of the rate of change of probability density that provide an insight into the intimate details of the scattering dynamics in time. The results show that this method is efficient and more useful to the inelastic scattering problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.