Abstract

In a twin-plane electrical capacitance tomography (ECT) system, velocity measurement of two-phase flow is transformed into the time delay estimation problem, while the nongaussianity and nonstationarity of two-phase flow signals have put the validity of the conventional cross-correlation algorithm in jeopardy. To improve the robustness and reliability of flow velocity measurement, an alternative method is proposed based on the dynamical lag correlation exponent and applied to coal ash measurement in a pneumatic pipeline. Different from the cross-correlation method which picks the peak point of the cross-correlation function as the delayed frames between the upstream and downstream signals, the proposed method determines the delayed frames by finding the minimum point of the dynamical lag correlation exponent. The preliminary results of flow velocity measurement indicate that the proposed method is capable of detecting various velocities (8–25 m s−1), which is useful for monitoring and predicting flow instability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call