Abstract
In order to reproduce the two-step relaxation observed experimentally in spin-crossover systems, we investigate analytically the static and the dynamic properties of a two-sublattice Ising-like Hamiltonian. The formalism is based on a stochastic master equation approach. It is solved in the mean-field approximation, and yields two coupled differential equations that correspond to the HS fractions of the sublattices A and B.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.