Abstract

We introduce an operational framework to analyze nonadiabatic Abelian and non-Abelian, cyclic and noncyclic, geometric phases in open quantum systems. In order to remove the adiabaticity condition, we generalize the theory of dynamical invariants to the context of open systems evolving under arbitrary convolutionless master equations. Geometric phases are then defined through the Jordan canonical form of the dynamical invariant associated with the superoperator that governs the master equation. As a by-product, we provide a sufficient condition for the robustness of the phase against a given decohering process. We illustrate our results by considering a two-level system in a Markovian interaction with the environment, where we show that the nonadiabatic geometric phase acquired by the system can be constructed in such a way that it is robust against both dephasing and spontaneous emission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.