Abstract
Constant strain rate molecular dynamics simulations under the modified boundary conditions were performed to elucidate the interaction processes between the kink motion of screw dislocation and the glissile self-interstitial atom cluster loops in bcc Fe by using an EAM potential for Fe fitted to ab initio forces. The junction formation and the helical dislocation mechanisms were identified as two possible interaction processes. In the junction mechanism, the initial Burgers vector 1/2<111> of the cluster loop was transformed into <100>. In the helical dislocation mechanism first the absorption, followed by the formation of the helical dislocation and the emission of the cluster loop through Hirsch mechanism was observed. Substantial hardening was seen as result of the interactions. The stress-strain plots obtained for different loop sizes, temperature and strain rates were used to estimate the strengthening factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.