Abstract
The phonon spectrum of stoichiometric Heusler alloy ${\text{Ni}}_{2}$FeGa is calculated for the high-temperature cubic austenite phase by using first-principles density functional perturbation theory. We also compute the elastic constants of the alloy from the initial slopes of the acoustic phonon branch. The ${\text{TA}}_{2}$ phonon branch along [110] direction shows softening with a minimum dip at $\ensuremath{\zeta}=0.58$ which indicates the possibility of modulated phases prior to martensitic transformation. We also map the Fermi surface of this alloy both in 3D and 2D to check the presence of any nesting vectors. The observed nesting parameter is in good agreement with the above value of the wave vector in the [110] direction where phonon softening occurs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.