Abstract

The dynamics of structural relaxation in a model polymer glass subject to spatially homogeneous, time-periodic shear deformation is investigated using molecular dynamics simulations. We study a coarse-grained bead-spring model of short polymer chains below the glass transition temperature. It is found that at small strain amplitudes, the segmental dynamics is nearly reversible over about 10^{4} cycles, while at strain amplitudes above a few percent, polymer chains become fully relaxed after a hundred cycles. At the critical strain amplitude, the transition from slow to fast relaxation dynamics is associated with the largest number of dynamically correlated monomers as indicated by the peak value of the dynamical susceptibility. The analysis of individual monomer trajectories showed that mobile monomers tend to assist their neighbors to become mobile and aggregate into relatively compact transient clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.