Abstract
One type of dynamical generation consists in the formation of multiple hadronic resonances from single seed states by incorporating hadronic loop contributions on the level of $s$-wave propagators. Along this line, we study the propagator poles within two models of scalar resonances and report on the status of our work: (i) Using a simple quantum field theory describing the decay of $f_{0}(500)$ into two pions, we may obtain a second, additional pole on the first Riemann sheet below the pion-pion threshold (i.e., a stable state can emerge). (ii) We perform a numerical study of the pole(s) of $a_{0}(1450)$ by using as an input the results obtained in the extended Linear Sigma Model (eLSM). Here, we do not find any additional pole besides the original one, thus we cannot obtain $a_{0}(980)$ as an emerging state. (iii) We finally demonstrate that, although the coupling constants in typical effective models might be large, the next-to-leading-order contribution to the decay amplitude is usually small and can be neglected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.