Abstract

We calculate Shannon information entropy of trapped interacting bosons in both the position and momentum spaces, Sr and Sk, respectively. The total entropy maintains the functional form S = a + b ln N for repulsive bosons. At the noninteracting limit the lower bound of entropic uncertainty relation is also satisfied whereas the diverging behavior of Sr and Sk at the critical point of collapse for attractive condensate accurately calculates the stability factor. Next we study the dynamics of Shannon information entropy with varying interparticle potential. We numerically solve the time-dependent Gross–Pitaevskii equation and study the influence of increasing nonlinearity in the dynamics of entropy uncertainty relation (EUR). We observe that for small nonlinearity the dynamics is regular. With increase in nonlinearity although Shannon entropy shows large variation in amplitude of the oscillation, the EUR is maintained throughout time for all cases and it confirms its generality. We also study the dynamics in a very tight trap when the condensate becomes highly correlated and strongly inhomogeneous. Time evolution of total entropy exhibits aperiodic and fluctuating nature in very tight trap. We also calculate Landsberg's order parameter for various interaction strengths which supports earlier observation that entropy and order are decoupled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.