Abstract

We report on {\it ab initio} time-dependent spin dynamics simulations for a two-center magnetic molecular complex based on time-dependent non-collinear spin density functional theory. In particular, we discuss how the dynamical behavior of the {\it ab initio} spin-density in the time-domain can be mapped onto a model Hamiltonian based on the classical Heisenberg spin-spin interaction $J\vcr{S}_1\cdot \vcr{S}_2$. By analyzing individual localized-spin trajectories, extracted from the spin-density evolution, we demonstrate a novel method for evaluating the effective Heisenberg exchange coupling constant, $J$, from first principles simulations. We find that $J$, extracted in such a new dynamical way, agrees quantitatively to that calculated by the standard density functional theory broken-symmetry scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.