Abstract

We present firstly the master equation of an electromagnetic perturbation with Weyl correction in the four-dimensional black hole spacetime, which depends not only on the Weyl correction parameter, but also on the parity of the electromagnetic field. It is quite different from that of the usual electromagnetic perturbation without Weyl correction in the four-dimensional spacetime. And then we have investigated numerically the dynamical evolution of the electromagnetic perturbation with Weyl correction in the background of a four-dimensional Schwarzschild black hole spacetime. Our results show that the Weyl correction parameter $\alpha$ and the parities imprint in the wave dynamics of the electromagnetic perturbation. For the odd parity electromagnetic perturbation, we find it grows with exponential rate if the value of $\alpha$ is below the negative critical value $\alpha_c$. However, for the electromagnetic perturbation with even parity, we find that there does not exist such a critical threshold value and the electromagnetic field always decays in the allowed range of $\alpha$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call