Abstract

The GJ876 system was among the earliest multi-planetary detections outside of the Solar System, and has long been known to harbor a resonant pair of giant planets. Subsequent characterization of the system revealed the presence of an additional Neptune mass object on an external orbit, locked in a three body Laplace mean motion resonance with the previously known planets. While this system is currently the only known extrasolar example of a Laplace resonance, it differs from the Galilean satellites in that the orbital motion of the planets is known to be chaotic. In this work, we present a simple perturbative model that illuminates the origins of stochasticity inherent to this system and derive analytic estimates of the Lyapunov time as well as the chaotic diffusion coefficient. We then address the formation of the multi-resonant structure within a protoplanetary disk and show that modest turbulent forcing in addition to dissipative effects is required to reproduce the observed chaotic configuration. Accordingly, this work places important constraints on the typical formation environments of planetary systems and informs the attributes of representative orbital architectures that arise from extended disk-driven evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.