Abstract

Abstract More than a dozen young stars host spiral arms in their surrounding protoplanetary disks. The excitation mechanisms of such arms are under debate. The two leading hypotheses—companion–disk interaction and gravitational instability (GI)—predict distinct motion for spirals. By imaging the MWC 758 spiral arm system at two epochs spanning ∼5 yr using the SPHERE instrument on the Very Large Telescope, we test the two hypotheses for the first time. We find that the pattern speeds of the spirals are not consistent with the GI origin. Our measurements further evince the existence of a faint “missing planet” driving the disk arms. The average spiral pattern speed is 0.°22 ± 0.°03 yr−1, pointing to a driver at au around a 1.9 M ☉ central star if it is on a circular orbit. In addition, we witness time-varying shadowing effects on a global scale that are likely originating from an inner disk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.