Abstract

This paper explores the connections between particle scattering and quantum information theory in the context of the non-relativistic, elastic scattering of two spin-1/2 particles. An untangled, pure, two-particle in-state is evolved by an S-matrix that respects certain symmetries and the entanglement of the pure out-state is measured. The analysis is phrased in terms of unitary, irreducible representations (UIRs) of the symmetry group in question, either the rotation group for the spin degrees of freedom or the Galilean group for non-relativistic particles. Entanglement may occurs when multiple UIRs appear in the direct sum decomposition of the direct product in-state, but it also depends of the scattering phase shifts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call