Abstract

A Rydberg molecule is composed of an outer electron that collides on the residual ionic core. Typical states of Rydberg molecules display entanglement between the outer electron and the core. In this work, we quantify the average entanglement of molecular eigenstates and further investigate the time evolution of entanglement production from initially unentangled states. The results are contrasted with the underlying classical dynamics, obtained from the semiclassical limit of the core-electron collision. Our findings indicate that entanglement is not simply correlated with the degree of classical chaos, but rather depends on the specific phase-space features that give rise to inelastic scattering. Hence mixed phase-space or even regular classical dynamics can be associated with high entanglement generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.