Abstract

The dynamical effects on electron-positron pair creation from a vacuum caused by the switching processes of a super-critical well potential are investigated in detail. The results show that only when the switching on and switching off time both increase will the final pair yield converge to the integer of embedded bound states nearly exponentially. But a single adiabatic switching on or switching off cannot lead to an integer pair yield. If the potential is turned on abruptly, associated with the discrete and embedded bound states, there is multi-frequency oscillation around the pair number’s saturation. The slowly switching on can suppress the amplitude of this oscillation and reduce the final pair yield. The switching off can also reduce the final pair number in the same order of magnitude. The evolution of a single-pair number shows a robust long range correlation between particle and antiparticle. For an adiabatic switching case, the single-pair dominates the early pair creation, their upper limit value is equal to the integer, and these single-pairs will totally disentangle during the switching off.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.