Abstract

NMR chemical shifts for an L-alanine molecular crystal are calculated using ab initio plane wave density functional theory. Dynamical effects including anharmonicity may be included by averaging chemical shifts over an ensemble of structural configurations generated using molecular dynamics (MD). The time scales required mean that ab initio MD is prohibitively expensive. Yet the sensitivity of chemical shifts to structural details requires that the methodologies for performing MD and calculating NMR shifts be consistent. This work resolves these previously competing requirements by fitting classical force fields to reproduce ab initio forces. This methodology is first validated by reproducing the averaged chemical shifts found using ab initio molecular dynamics. Study of a supercell of L-alanine demonstrates that finite size effects can be significant when accounting for dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.