Abstract

We study matrix element fluctuations of the two-body screened Coulomb interaction and of the one-body surface charge potential in ballistic quantum dots, comparing behavior in actual chaotic billiards with analytic results previously obtained in a normalized random-wave model. We find that the matrix element variances in actual chaotic billiards typically exceed by a factor of 3 or 4 the predictions of the random-wave model, for dot sizes commonly used in experiments. We discuss dynamical effects that are responsible for this enhancement. These dynamical effects have an even more striking effect on the covariance, which changes sign when compared with random-wave predictions. In billiards that do not display hard chaos, an even larger enhancement of matrix element fluctuations is possible. These enhanced fluctuations have implications for peak spacing statistics and spectral scrambling for quantum dots in the Coulomb blockade regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.