Abstract

The recently proposed dynamical effective field model (DEFM) is quantitatively accurate for ferrofluid dynamics. It is derived in paper I within the framework of dynamical density functional theory (DDFT) along with a phenomenological description of nonadiabatic effects. However, it remains to clarify how the characteristic rotational relaxation time of a dressed particle, denoted by τ r , is quantitatively related to that of a bare particle, denoted by . By building macro-micro connections via two different routes, I reveal that under some gentle assumptions τ r can be identified with the mean time characterizing long-time rotational self-diffusion. I further introduce two simple but useful integrated correlation factors, describing the effects of quasi-static (adiabatic) and dynamic (nonadiabatic) inter-particle correlations, respectively. In terms of both the dynamic magnetic susceptibility is expressed in an illuminating and elegant form. Remarkably, it shows that the macro-micro connection is established via two successive steps: a dynamical coarse-graining with nonadiabatic effects accounted for by the dynamic factor, followed by equilibrium ensemble averaging captured by the static factor. By analyzing data from Brownian dynamics simulations on monodisperse interacting ferrofluids, I find is, somehow unexpectedly, insensitive to changes of particle volume fraction. A physical picture is proposed to explain it. Furthermore, an empirical formula is proposed to characterize the dependence of on dipole-dipole interaction strength. The DEFM supplemented with this formula leads to parameter-free predictions in good agreement with results from Brownian dynamics simulations. The theoretical developments presented in this paper may have important consequences to studies of ferrofluid dynamics in particular and other systems modeled by DDFTs in general.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call