Abstract

In this paper, it is pointed out that the light transmission anomalies observed for thin-film metallic gratings can be explained entirely in terms of dynamical diffraction theory. Surface plasmons are an intrinsic component of the diffracted wave field and, as such, play no independent causal role in the anomalies, as has been implied by others. The dynamical scattering matrix for the Bloch-wave modes of the diffracted photon wave field (E, H) is derived for a three-dimensionally periodic medium with arbitrary dielectric constant. A new theoretical treatment and numerical results are presented for a one-dimensional array of slits. In model metallic slit arrays, with negative dielectric constant, 100% and 0% transmission is possible at different wavelengths in the zero-order beam. In slit arrays, both propagating and evanescent modes (traditional surface plasmons) are strongly excited at both the peak and the minimum transmission conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.