Abstract

By analyzing the real space non-equilibrium dynamics of polymers, we elucidate the physics of driven translocation and propose its dynamical scaling scenario analogous to that in the surface growth phenomena. We provide a detailed account of the previously proposed tension-propagation formulation and extend it to cover the broader parameter space relevant to real experiments. In addition to a near-equilibrium regime, we identify three distinct non-equilibrium regimes reflecting the steady-state property of a dragged polymer with finite extensibility. Finite-size effects are also pointed out. These elements are shown to be crucial for the appropriate comparison with experiments and simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.