Abstract

In this paper we dynamically determine the quadrupole mass moment Q of the magnetic white dwarf WD 0137-349 by looking for deviations from the third Kepler law induced by Q in the orbital period of the recently discovered brown dwarf moving around it in a close 2-hr orbit. It turns out that a purely Newtonian model for the orbit of WD 0137-349B, assumed circular and equatorial, is adequate, given the present-day accuracy in knowing the orbital parameters of such a binary system. Our result is Q=(−1.5±0.9)×1047 kg m2 for i=35 deg. It is able to accommodate the 3-sigma significant discrepancy of (1.0±0.3)×10−8 s−2 between the inverse square of the phenomenologically determined orbital period and the inverse square of the calculated Keplerian one. The impact of i, for which an interval Δ i of possible values close to 35 deg is considered, is investigated as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.