Abstract
We study the dynamical depinning following a sudden turn off of an optical lattice for a gas of impenetrable bosons in a tight atomic waveguide. We use a Bose-Fermi mapping to infer the exact quantum dynamical evolution. At long times, in the thermodynamic limit, we observe the approach to a non-equilibrium steady state, characterized by the absence of quasi-long-range order and a reduced visibility in the momentum distribution. Similar features are found in a finite-size system at times corresponding to half the revival time, where we find that the system approaches a quasi-steady state with a power-law behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.