Abstract

We present a consistent dynamical nucleation theory based on density functional theory. By considering the properties of stable droplets in closed volumes, the height and shape of the barrier to nucleation are calculated. Contributions from fluctuations in the center of mass of the nucleating cluster are taken into account. Forward and backward rates for cluster dynamics are obtained, and nucleation rates are then evaluated under steady-state conditions. We test the quantitative effects of several shortcuts to calculating nucleation rates. The predictions of the full theory presented here show very modest changes from those of the simpler nonclassical theory proposed earlier by Oxtoby and co-workers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.