Abstract

The investigation of the characteristics of low-energy heavy ion reactions covering both fusion and quasifission is carried out within the dinuclear system (DNS) concept, which is developed to include the deformation variables of fragments in addition to the mass numbers of the fragments, so that the energy dissipation, nucleon exchange, and deformation evolutions of the colliding nuclei as well as their correlations are treated simultaneously, and the potential energy surface of the system is thus reaction-time dependent. The direct consequence of introducing the deformation of fragments as dynamical variables is that one must treat the orientation between the two deformed nuclei. This is solved by introducing a barrier function. It is found that the model can reproduce data about the mass, as well as the total kinetic energy and its dispersion, of the reaction products very well, revealing that the DNS model has a reasonable theoretical foundation and thus can reliably describe the reaction mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.