Abstract

Controlling the dynamics of entanglement and preventing its disappearance are central requisites for any implementation of quantum information processing. Solid state qubits are frequently affected by random telegraph noise due to bistable impurities of different nature coupled to the device. In this paper, we investigate the possibility to achieve an efficient universal two-qubit gate in the presence of random telegraph noise by periodic dynamical decoupling. We find an analytic form of the gate error as a function of the number of applied pulses valid when the gate time is much shorter then the telegraphic process correlation time. The analysis is further supplemented by exact numerical results demonstrating the feasibility of a highly-efficient universal two-qubit gate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.