Abstract

We study the evolution of a driven harmonic oscillator with a time-dependent frequency $\omega_t \propto |t|$. At time $t=0$ the Hamiltonian undergoes a point of infinite spectral degeneracy. If the system is initialized in the instantaneous vacuum in the distant past then the asymptotic future state is a squeezed state whose parameters are explicitly determined. We show that the squeezing is independent on the sweeping rate. This manifests the failure of the adiabatic approximation at points where infinitely many eigenvalues collide. We extend our analysis to the situation where the gap at $t=0$ remains finite. We also discuss the natural geometry of the manifold of squeezed states. We show that it is realized by the Poincar\'e disk model viewed as a K\"ahler manifold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.