Abstract

This review recapitulates the concept of the wave-driven residual circulation in the stratosphere and mesosphere. The residual circulation is defined as the conventional mean meridional circulation corrected by the quasi-linear Stokes drift due to atmospheric waves. Only when the zonal-mean primitive equations are transformed using the residual circulation, they reflect the causality arising from the Eliassen-Palm (EP) theorem. The EP theorem states that the proper wave-mean flow interaction, defined as the EP flux divergence, vanishes for waves that are linear, conservative, and steady. In the real atmosphere, this theorem is violated mainly due to wave breaking and turbulence. The resulting EP flux divergence then drives a residual circulation which causes the observed substantial deviations from some hypothetical radiatively determined state. With regard to this dynamical control we discuss the different contributions of Rossby waves and gravity waves. Recapitulation of Lindzen’s theory of gravity-wave saturation allows us to interpret various phenomena in the upper mesosphere such as interhemispheric coupling or modulations of the gravity-wave driven branch of the residual circulation by solar proton effects and thermal tides. In addition we discuss the relative importance of changes in radiative transfer and tropospheric gravity-wave sources on the long-term temperature trends in the summer mesosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call