Abstract

From the point of view of the cognitive dynamicist the organization of brain circuitry into assemblies defined by their synchrony at particular (and precise) oscillation frequencies is important for the correct correlation of all independent cortical responses to the different aspects of a given complex thought or object. From the point of view of anyone operating complex mechanical systems, i.e., those comprising independent components that are required to interact precisely in time, it follows that the precise timing of such a system is essential – not only essential but measurable, and scalable. It must also be reliable over observations to bring about consistent behavior, whatever that behavior is. The catastrophic consequence of an absence of such precision, for instance that required to govern the interference engine in many automobiles, is indicative of how important timing is for the function of dynamical systems at all levels of operation. The dynamics and temporal considerations combined indicate that it is necessary to consider the operating characteristic of any dynamical, cognitive brain system in terms, superficially at least, of oscillation frequencies. These may, themselves, be forensic of an underlying time-related taxonomy. Currently there are only two sets of relevant and necessarily systematic observations in this field: one of these reports the precise dynamical structure of the perceptual systems engaged in dynamical binding across form and time; the second, derived both empirically from perceptual performance data, as well as obtained from theoretical models, demonstrates a timing taxonomy related to a fundamental operator referred to as the time quantum. In this contribution both sets of theory and observations are reviewed and compared for their predictive consistency. Conclusions about direct comparability are discussed for both theories of cognitive dynamics and time quantum models. Finally, a brief review of some experimental data measuring sensitivity to visual information presented to the visual blind field (blindsight), as well as from studies of temporal processing in autism and schizophrenia, indicates that an understanding of a precise and metrical dynamic structure may be very important for an operational understanding of perception as well as more general cognitive function in psychopathology.

Highlights

  • There are only two sets of relevant and necessarily systematic observations in this field: one of these reports the precise dynamical structure of the perceptual systems engaged in dynamical binding across form and time; the second, derived both empirically from perceptual performance data, as well as obtained from theoretical models, demonstrates a timing taxonomy related to a fundamental operator referred to as the time quantum

  • A brief review of some experimental data measuring sensitivity to visual information presented to the visual blind field, as well as from studies of temporal processing in autism and schizophrenia, indicates that an understanding of a precise and metrical dynamic structure may be very important for an operational understanding of perception as well as more general cognitive function in psychopathology

  • It makes sense to believe that regular, metrical properties of neural activity determine successful cognition and that cognition may recover from damage to the neural substrate by virtue of reconfiguration in surrogate neural substrate, to the extent that it is able to reconfigure itself in a regular and metrical pattern

Read more

Summary

Introduction

A brief review of some experimental data measuring sensitivity to visual information presented to the visual blind field (blindsight), as well as from studies of temporal processing in autism and schizophrenia, indicates that an understanding of a precise and metrical dynamic structure may be very important for an operational understanding of perception as well as more general cognitive function in psychopathology. This relationship requires the following correspondences: (i) establishing a constant link between a value of Q0 in the range 4.5–4.65 ms and the priming frequencies, which for protentive coding are 32.25–33.5 Hz; 38–40 Hz; 45.75–46.5 Hz; 53.25–53.75 Hz; 59–60.75 and 65.75– 67.5 Hz; (ii) establishing, if not a hierarchical relationship, a relationship in which frequencies at different scales can be seen to interact to bring about a particular psychophysical effect and (iii), from this set of data establish a relationship pointing toward a limit cycle of 32 ∗ Q0.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call