Abstract

The systems benzene/benzene-d(1) and o-/m-/p-difluorobenzene were studied in the dense gas phase with ultrafast transient absorption spectroscopy to investigate the effect of symmetry reduction through monodeuteration and constitutional isomerism on the timescales of intramolecular vibrational energy redistribution (IVR). In both systems IVR proceeds faster in the molecules of lower symmetry. In addition the dynamics were simulated in vibrational quantum number space using a simple model based on scaling state-to-state interactions by coupling order and the energy gap law. These simulations (semi-) quantitatively reproduce the experimental data for benzene and benzene-d(1) without incorporating further molecular symmetry restrictions. The relative impact of molecular symmetry and vibrational state space structure on IVR is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.