Abstract

The measurement of a large tensor-to-scalar ratio by the BICEP2 experiment, r=0.20−0.05+0.07, severely restricts the landscape of viable inflationary models and shifts attention once more towards models featuring large inflaton field values. In this context, chaotic inflation based on a fractional power-law potential that is dynamically generated by the dynamics of a strongly coupled supersymmetric gauge theory appears to be particularly attractive. We revisit this class of inflation models and find that, in the light of the BICEP2 measurement, models with a non-minimal gauge group behind the dynamical model seem to be disfavored, while the model with the simplest group, i.e. SU(2), is consistent with all results. We also discuss how the dynamical model can be distinguished from the standard chaotic inflation model based on a quadratic inflaton potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.