Abstract

The time-dependent Casimir-Polder force arising during the time evolution of an initially bare two-level atom, interacting with the radiation field and placed near a perfectly conducting wall, is considered. Initially the electromagnetic field is supposed to be in the vacuum state and the atom in its ground state. The analytical expression of the force as a function of time and atom-wall distance is evaluated from the time-dependent atom-field interaction energy. Physical features and limits of validity of the results are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.