Abstract

We illustrate how dynamical transitions in nonlinear semiclassical models can be recognized as phase transitions in the corresponding -- inherently linear -- quantum model, where, in a Statistical Mechanics framework, the thermodynamic limit is realized by letting the particle population go to infinity at fixed size. We focus on lattice bosons described by the Bose-Hubbard (BH) model and Discrete Self-Trapping (DST) equations at the quantum and semiclassical level, respectively. After showing that the gaussianity of the quantum ground states is broken at the phase transition, we evaluate finite populations effects introducing a suitable scaling hypothesis; we work out the exact value of the critical exponents and we provide numerical evidences confirming our hypothesis. Our analytical results rely on a general scheme obtained from a large-population expansion of the eigenvalue equation of the BH model. In this approach the DST equations resurface as solutions of the zeroth-order problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.