Abstract

This study analyzes the evolution of silicon clusters of size N up to 70 atoms determined by the increase of the kinetic energy and the resulting transient is constructed using either isoenergic or isothermal molecular dynamics with a quantum mechanical Hamiltonian within the DFT and the semiempirical groups. The calculations show that, while the path to the final stage depends on the type, isoenergic or isothermal, of molecular dynamics the final stage itself is determined only by cluster size and by the input kinetic energy. Fragmentation is observed at all sizes: at N lower than 20 the fragments are monomers, dimers and trimers whereas at the larger sizes subunits of a size in the range of the parent clusters are observed. The results obtained with different Hamiltonians have only quantitative differences, of scarce physical meaning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.