Abstract
In this paper, the local derivative in time is replaced with the Caputo-Fabrizio fractional derivative of order $ \alpha\in(0, 1) $. A two-step fractional version of the Adams-Bashforth method is formulated for the approximation of this derivative. To enhance the correct choice of parameters when numerically simulating the full-system, we examine the stability analysis of the main equation. Two important examples are drawn to explore the dynamic richness of the predator-prey model with Holling type. Simulation results at different instances of $ \alpha $ is in agreement with the theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.