Abstract

We establish a discrete virus dynamic model by discretizing a continuous HIV-1 virus model with bilinear infective rate using ‘hybrid’ Euler method. We discuss not only the existence and global stability of the uninfected equilibrium but also the existence and local stability of the infected equilibrium. We prove that there exists a crucial value similar to that of the continuous HIV-1 virus dynamics, which is called the basic reproductive ratio of the virus. If the basic reproductive ratio of the virus is less than one, the uninfected equilibrium is globally asymptotically stable. If the basic reproductive ratio of the virus is larger than one, the infected equilibrium exists and is locally stable. Moreover, we consider the permanence for such a system by constructing a Lyapunov function vn. Copyright © 2013 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.