Abstract
Abstract We study the Hausdorff dimension of the intersection between local stable manifolds and the respective basic sets of a class of hyperbolic polynomial endomorphisms on the complex projective space ℙ2. We consider the perturbation (z 2 +ɛz +bɛw 2, w 2) of (z 2, w 2) and we prove that, for b sufficiently small, it is injective on its basic set Λɛ close to Λ:= {0} × S 1. Moreover we give very precise upper and lower estimates for the Hausdorff dimension of the intersection between local stable manifolds and Λɛ, in the case of these maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.