Abstract

We characterize a stochastic dynamical system with tempered stable noise, by examining its probability density evolution. This probability density function satisfies a nonlocal Fokker-Planck equation. First, we prove a superposition principle that the probability measure-valued solution to this nonlocal Fokker-Planck equation is equivalent to the martingale solution composed with the inverse stochastic flow. This result together with a Schauder estimate leads to the existence and uniqueness of strong solution for the nonlocal Fokker-Planck equation. Second, we devise a convergent finite difference method to simulate the probability density function by solving the nonlocal Fokker-Planck equation. Finally, we apply our aforementioned theoretical and numerical results to a nonlinear filtering system by simulating a nonlocal Zakai equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.